Get moving with this powerful Bipolar Stepper Phidget. With a maximum power supply of 30V, it can provide up to 4A of current to each stepper coil. The result is that you can control the position, velocity and acceleration of one large bipolar stepper using a port on your VINT Hub (See the Connection & Compatibility tab for a list of hubs). Steppers are especially popular in applications where accurate positioning is important.



Safety and Protection

The Stepper Phidget comes with a number of safety features, since motors have a reputation of damaging unprotected circuits with current spikes when a motor stalls or changes direction under heavy load. There's a fuse socket with a 5A automotive fuse to protect your Phidget in just such an occasion, and the power terminals are polarity protected in case the power supply gets wired up backwards. The VINT port on this Phidget is isolated from the power circuit, so you don't have to worry about damaging your hub or computer if something goes wrong. Ensure that this Phidget is in a well-ventilated area if you plan on running it close to maximum specifications.

Power Saving Options

For power-conscious users, we also allow for separate control over the current limit and the holding current limit. If you know your motor will be stationary for long periods of time, but still needs a small amount of holding torque to maintain its position, you can set the holding current appropriately without interfering with the running current limit.

Warning


warning Make sure the power supply is unplugged before attaching or removing wires from the terminal blocks. Failure to do so could cause permanent damage to the Phidget.

Related Videos








Product Specifications

Board Properties
Controlled By VINT
Controller Properties
Motor Type Bipolar Stepper
Number of Motor Ports 1
Motor Position Resolution 116 Step (40-Bit Signed)
Position Max ± 1E+15 1/16 steps
Stepper Velocity Resolution 1 1/16 steps/sec
Stepper Velocity Max 115000 1/16 steps/sec
Stepper Acceleration Resolution 1 1/16 steps/sec²
Stepper Acceleration Min 2 1/16 steps/sec²
Stepper Acceleration Max 1E+07 1/16 steps/sec²
Sampling Interval Min 100 ms/sample
Sampling Interval Max 60 s/sample
Electrical Properties
Available Current per Coil Max 4 A
Supply Voltage Min 10 V DC
Supply Voltage Max 30 V DC
Current Consumption Min 50 mA
Current Consumption Max 7 A
Current Consumption Min (VINT Port) 500 μA
Current Consumption Max (VINT Port) 1 mA
Quiescent Power Consumption Max * 200 mW
Physical Properties
Recommended Wire Size 16 - 26 AWG
Operating Temperature Min -20 °C
Operating Temperature Max 85 °C

* Power consumption varies based on supply power. See the technical section of the User Guide for details.


Documents



Getting Started


Welcome to the STC1000 user guide! In order to get started, make sure you have the following hardware on hand:



Next, you will need to connect the pieces:


STC1000 Functional.jpeg


  1. Connect the STC1000 to the VINT Hub using the Phidget cable.
  2. Connect the stepper motor to the Phidget's output terminals. See your motor's data sheet or product page for wiring instructions.
  3. Connect the VINT Hub to your computer with a USB cable.
  4. Connect the power supply to the power terminals.



Now that you have everything together, let's start using the STC1000!


Using the STC1000


Phidget Control Panel


In order to demonstrate the functionality of the STC1000, the Phidget Control Panel running on a Windows machine will be used.



The Phidget Control Panel is available for use on both macOS and Windows machines.


Windows


To open the Phidget Control Panel on Windows, find the Ph.jpg icon in the taskbar. If it is not there, open up the start menu and search for Phidget Control Panel


Windows PhidgetTaskbar.PNG


macOS


To open the Phidget Control Panel on macOS, open Finder and navigate to the Phidget Control Panel in the Applications list. Double click on the Ph.jpg icon to bring up the Phidget Control Panel.



For more information, take a look at the getting started guide for your operating system:




Linux users can follow the getting started with Linux guide and continue reading here for more information about the STC1000.


First Look


After plugging the STC1000 into your computer and opening the Phidget Control Panel, you will see something like this:


STC1000 Panel.jpg



The Phidget Control Panel will list all connected Phidgets and associated objects, as well as the following information:


  • Serial number: allows you to differentiate between similar Phidgets.
  • Channel: allows you to differentiate between similar objects on a Phidget.
  • Version number: corresponds to the firmware version your Phidget is running. If your Phidget is listed in red, your firmware is out of date. Update the firmware by double-clicking the entry.



The Phidget Control Panel can also be used to test your device. Double-clicking on an object will open an example.


Stepper Motor


Double-click on the Stepper object, labelled Stepper Phidget, in order to run the example:


STC1000 Stepper Example.jpg



General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:


  • Toggle the Engage button to provide power to the motor coils.
  • By default, motor position, velocity, and acceleration are measured in sixteenths of a step. If you want to use different units, change the value in the Rescale Factor textbox.
  • Use the Target Position slider to set a new target position. Change the Acceleration and Velocity sliders to speed up or slow down the STC1000's approach.
  • Select the Velocity (Continuous) Control tab for continuous rotation instead of specifiying a position.




Finding The Addressing Information


Before you can access the device in your own code, and from our examples, you'll need to take note of the addressing parameters for your Phidget. These will indicate how the Phidget is physically connected to your application. For simplicity, these parameters can be found by clicking the button at the top of the Control Panel example for that Phidget.


The locate Phidget button is found in the device information box


In the Addressing Information window, the section above the line displays information you will need to connect to your Phidget from any application. In particular, note the Channel Class field as this will be the API you will need to use with your Phidget, and the type of example you should use to get started with it. The section below the line provides information about the network the Phidget is connected on if it is attached remotely. Keep track of these parameters moving forward, as you will need them once you start running our examples or your own code.


All the information you need to address your Phidget


Using Your Own Program


You are now ready to start writing your own code for the device. The best way to do that is to start from our examples:


This Phidget is compatible with the Stepper Examples.


Once you have your example, you will need to follow the instructions on the page for your programming language to get it running. To find these instructions, select your programming language from the Programming Languages page.


Technical Details


Rescale Factor


Power Consumption


The quiescent (idle) power consumption of the STC1000 varies depending on the amount of voltage it's supplied.


Stcpower.jpg


Further Reading


For more information, have a look at the Stepper Motor and Controller Primer.





STC1000_0 - Stepper Phidget

  • Brand: Phidgets
  • Product Code: ES002333
  • Availability: In Stock
  • 68.75€